Response Functions in a Proposed Ecosystem Services Analysis Framework for the US Army Corps of Engineers

Lisa Wainger¹, Anna McMurray¹,

Elizabeth Murray², Janet Cushing³

¹University of Maryland Center for Environmental Science

²U.S. Army Engineer Research and Development Center

³U.S. Army Institute for Water Resources

Determining Ecosystem-Derived Economic Benefits from Projects

Restoration Response Functions Targeting to achieve greatest return on investment

Stressor Response Functions

Economic Damage Functions Differ from biophysical response functions

Conceptual models linking management options to beneficial outcomes

3. Ecosystem **Affected** 2. Ecological **EGS** Management **Goods and Processes/ Outcomes Categories Options Structures** Services Modify dam Hydrologic Recruitment Ecosystem Conservation operations Regime of foundation biodiversity: priority of • Flow Remove dam species - trees Restoring a ecosystem magnitude, portion of Composition Construct duration, and Qualitythreatened & diversity in meanders & timing adjusted area ecosystems plant associated Riparian of restored to selfcommunities channel blocks groundwater sustaining ecosystem of depth states Construct irricottonwood-% of total gation channels willow ecosystem **Ecological** riparian Plant native occurrence Structure forests within the riparian Soil structure project vegetation and **Transport** saturation % of restorable sediment from Vegetation ecosystem above the dam species within the and deposit on distribution project banks

Response function models for non-use services

Ecological Outcome Metric	Models			
Recruitment of foundation plant species	Hydrologic Engineering Center River Analysis System (HEC-RAS) & Hydrologic Engineering Center Ecosystem Functions Model (HEC-EFM)			
Composition and diversity in plant communities	Hydrogeomorphic Model (HGM) - Characteristic Plant Communities function for Cottonwood-Willow and Mesquite Communities (Webb & Burks-Copes 2009)			

Response function model results Recruitment of foundation trees

Acres with soil moisture sufficient for tree recruitment						
Future without project	Alternative A	Alternative B	Alternative C	Alternative D		
20	20	60	60	80		

Response function model results Composition and diversity in plant communities of riparian forests

Plant community composition & diversity functional capacity index (FCI) and acreage									
Future without project		Alternative A		Alternative B		Alternative C		Alternative D	
FCI	Acres	FCI	Acres	FCI	Acres	FCI	Acres	FCI	Acres
0.84	20	0.84	20	0.9	20	0.9	20	0.9	20
0	180	0.4	20	0.55	50	0.72	180	0.82	180
-	-	0	160	0	130	-	-	-	-

Example MCDA Results Project alternatives

Key

Large positive impact Moderate positive impact Small positive impact No change Small negative impact Moderate negative impact Large negative

impact

		Alt A	Alt B	Alt C	Alt D	Alt E
ct (Riparian ecosystem sustainability	0	10	14	14	14
	Aquatic ecosystem sustainability	0	8	8	19	19
	Roundtail Chub Viability	0	4	4	9	9
	Southwestern Willow Flycatcher Viability	0	0	8	10	10
	Property protection from floods	0	0	3	10	10
ָ ֡ ֡	General recreation	0	0	5	5	5
	Recreational birding	0	0	5	5	5
	Aggregate Score	0	22	47	72	72

Conclusions

- Functional understanding is adequate to support decisions for some services
- Need to strengthen ability to:
 - Screen for effectiveness of management measures
 - Non-linearities in production of beneficial outcomes
 - Evaluate joint production of multiple services
 - Complementary /competition among services
- Major data gap: models reflecting probable outcomes given uncertainties (e.g., population viability analyses)